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’ INTRODUCTION

Computer-aided analysis and visualization of SAR information
contained in large compound data sets have been increasingly
investigated topics in recent years.1,2 For this purpose, different
graphical analysis methods have been introduced, such as SAR
maps,3 structure�activity landscape index graphs,4 or network-
like similarity graphs.5 Some of these methods are designed to
globally view similarity and potency relationships in large com-
pound data sets, identify activity cliffs,4,5 or study the relationship
between global and local SAR characteristics.5 Informative local
SAR environments can be further studied, for example, using a
data structure termed a similarity-potency tree6 that monitors
structural nearest neighbor and potency relationships in a
compound-centric, rather than global, manner.

Regardless of the methodological details, all SAR analysis
methods must take into account similarity relationships between
active compounds. To represent individual analogue series,
standard R-group decomposition can be applied and numerical
similarity measures are not essential. However, when compound
data sets grow in size and become structurally diverse, the
requirements change. All currently available numerical or gra-
phical analysis methods that provide SAR views of large data sets
have in common that they account for compound similarity on a
whole-molecule basis, usually by calculating Tanimoto similarity
(using different molecular representations) between active com-
pounds in a pairwise manner. As a consequence, although com-
pound subsets that are rich in SAR information are detected and
visualized using these methods, structural changes that yield
interpretable SAR patterns must generally be analyzed subse-
quently, following the preselection of compound subsets that
introduce local or global SAR discontinuity.7 Of course, uncover-
ing structural modifications that yield defined SAR phenotypes
and highly potent compounds is of cardinal importance for
medicinal chemistry applications.

Therefore, we have designed a methodology for large-scale
SAR analysis that does not rely on numerical compound simi-
larity assessment but directly accounts for structural relationships
between active compounds as an organizing principle. Therefore,
we have initially generalized the matched molecular pair (MMP)8

formalism as a compound similarity criterion. An MMP is defined
as a pair of compounds that only differ at a single site such as a
specific R-group or ring system. Hence, compounds forming an
MMP are distinguished by a defined substructure, and the ex-
change of this substructure represents a converting chemical trans-
formation. Applying this compound similarity criterion, we have
then designed a potency-annotated bipartite graph representation
that, for the first time, globally organizes compound data sets
focusing on local compound substructure relationships. Herein, we
describe the design of this data structure and illustrate its utility in
an exemplary application on a large compound set.

’MATERIALS AND METHODS

Matched Molecular Pairs. MMPs were calculated according to
Hussain and Rea.9 The algorithm generates molecular fragments by
deleting acyclic single bonds and stores them as key�value pairs in an
index table. If one single bond is deleted, a molecule is separated into two
fragments. Each of these fragments is inserted once as a key in the index
table and the other as the associated value. In the simplest case, two
molecules forming an MMP differ only in one R-group attached to a
common core via a single bond. During fragmentation and indexing,
these R-groups are associated with the same key (common core). Thus,
once the entire data set has been processed, all MMPs can be identified
from the index table by searching for keys with more than one value. In
addition to single bonds, bond pairs and triplets are also deleted,
resulting in the formation of a core fragment and two (“double cut”)
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or three (“triple cut”) substituents. These substituents are then collec-
tively stored as a key and the core as the value. In our current
implementation, keys are permitted to consist of maximally 10 heavy
atoms. Additionally, the value fragment is not allowed to contain more
heavy atoms than the corresponding key. Both thresholds can be easily
modified to meet a specific analysis objective. MMP generation and
molecule visualizations were implemented in Java using the OpenEye
chemistry toolkit.10

Graph Generation. The graphs are constructed on the basis of an
MMP index table. They contain two different types of objects as nodes:
(1) keys that correspond to the key fragments of the MMP index table
and (2) molecules. Only keys associated with more than one value are
considered. Keys are connected by an edge to all compounds that
contain the respective key fragment. The size threshold of 10 heavy
atoms is not applied in this step to also include structures with larger
substituents attached to the key fragment. Therefore, in our implemen-
tation, we ultimately include all molecules by adding relevant value
fragments above the size threshold to the index in a subsequent step.
However, the second constraint that limits the size of the value relative to
the size of the keymust generally bemet. Edges are associatedwith the value
fragment of the respective key�molecule pair. Because connections are
only formed between two different types of objects, keys and molecules,
this data structure represents a bipartite graph. If two keys are connected
to the same set of molecules, the less specific key (i.e., the one associated
with the larger value fragment for each of the compounds) is removed,
which reduces the complexity of the graph by omitting redundant
information. In addition, key nodes that connect to compound subsets
of another node and nonconnected nodes (singletons) are removed.
Subset relationships are stored in a separate hierarchical treelike graph
that contains only key nodes. Here, a key is the successor of another if it
connects to a subset of its neighbors. The graph structures were
implemented using the Java package JUNG.11

Graph Visualization. For graph visualization, the molecule nodes
are colored by potency according to a continuous gradient from green to
red, reflecting the lowest and highest potencies in the data set,
respectively. Key nodes are colored according to their “cut level”: white,
light blue, and dark blue nodes indicate keys resulting from single,
double, and triple cuts, respectively. For clarity, molecules connected to
only one key are not shown as separate nodes but are combined to a
“supernode” that represents this key as a rectangle containing a square
for each molecule that is colored by potency. Additionally, edges are
colored according to the cut level of the corresponding key node. The
graph layout is generated using the JUNG implementation of a self-
organizing map (SOM) algorithm, and every connected component of
the graph is laid out separately. The graph layout can be interactively
edited.

’RESULTS AND DISCUSSION

Methodological Concept. The method introduced herein is
designed to represent the global composition of a compound
data set and its potency distribution by focusing on local
substructure matches. On the basis of the MMP index table,
molecules are organized into structural sets. Each set contains all
compounds that differ only by a single modification at a specific
site. In the following, we refer to these sets as matching molecular
series (MMS). These sets often overlap because a compound
that differs at one site from a number of molecules might differ at
another site from others. Such a compound would then belong to
twoMMS. By systematically generating all MMS for a compound
data set, structural relationships contained in this set are com-
prehensively accounted for. A bipartite graph structure has been
designed to represent the composition of MMS and the

relationships formed between them. Furthermore, the bipartite
graph is annotated with compound potency information. The
complete graph representation is termed a bipartite MMS
(BMMS) graph.
In addition to the MMP concept that provides the basis for

MMS and bipartite graph generation, other structural organiza-
tion schemes have also been introduced. These include classical
R-group decomposition of analogue series (as utilized, for exam-
ple, for the generation of SAR maps3 or combinatorial analogue
graphs12), hierarchical scaffold generation,13 and the scaffold tree
data structure.14 In the scaffold tree, rings are iteratively removed
from initially generated hierarchical scaffolds according to pre-
defined chemical rules until only an individual ring remains.
Hence, the scaffold tree captures hierarchical substructure rela-
tionships between scaffolds along rule-based decomposition
pathways. For our major purpose, i.e., the replacement of calcu-
lated molecular similarities in SAR-relevant compound network
representations with directly accessible structural relationships,
the MMP concept has been the preferred choice due to its
generality.
Bipartite Graph Representation. In the BMMS graph, “key

nodes” represent MMS. A key is the substructure common to all
molecules in a series. Individual compounds are represented by
“molecule nodes”. Each molecule of a series is connected to the
corresponding key node by an edge. Key nodes are graphically
annotated with their substructure, and edges are annotated with
the substitution that distinguishes a molecule from its key. All
MMS a molecule belongs to are identified by the keys it is
connected to in the graph. Molecule nodes are color-coded
according to compound potency. The BMMS graph provides a
global view of the structural and potency relationships contained
in a data set. Figure 1 shows how this data structure is generated
and how the graph representation looks. In Figure 1a, the graph
of a model compound set is shown that includes eight possible
keys. To simplify the graph structure, redundant key nodes are
removed from the graph. In this example, keys 2 and 3 as well as 5
and 6 describe the same sets of molecules. In both cases, the key
associated with the more general substructure is removed (3 and
6, respectively) because it does not provide additional structural
information. Hence, such keys are considered redundant.
Furthermore, key 5 describes a subset of the compounds con-
nected to key 7. Therefore, key 5 is also removed from the graph.
The final reduced BMMS graph is shown in Figure 1b. To further
simplify the graphical representation, molecules only connected
to a single key are not drawn as individual nodes but combined
into a supernode that represents this key as a rectangle containing
squares (molecules) colored by potency (this symbol is also used
for a single compound that is only connected to one node).
Although key 5 is removed from the graph, as discussed above,
the subset relationship between key 5 and key 7 is recorded in the
subset hierarchy, as shown in Figure 1c. The hierarchy exclusively
consists of key nodes and is part of the data structure. Its gra-
phical representation complements the information contained in
the BMMS graph, as further illustrated below.
SARPatterns.A characteristic feature of the BMMS graph and

its associated hierarchy is that these graph representations
contain signature patterns (subgraphs) that reveal detailed SAR
information. This feature is of central relevance for SAR analysis.
The signature patterns are schematically illustrated in Figure 2.
First, substitution sites having a large effect on compound

potency (“SAR hot spots”) can be identified by searching for key
nodes connected to compounds that cover a broad potency range
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Figure 1. BMMS graph structure. Schematic illustrations of the BMMS graph structure are shown. (a) An unprocessed graph containing all possible key
nodes was calculated for a model data set. Key nodes (numbered from 1 to 8) are colored according to their cut level in white, light blue, or dark blue for
single, double, and triple cuts, respectively (see the Materials and Methods). Furthermore, molecule nodes are colored by potency according to a color
spectrum from green (lowest potency) to red (highest potency) as indicated by the color bar on the left. All compound structures (black) and shared
substructures (blue) that are associated with key nodes are shown next to the corresponding nodes. Asterisks in key node substructures mark attachment
points for variable substituents that occur in the compound series. (b) The processed graph is shown after removal of (1) key nodes that describe the
same compound set or (2) a subset of another node. In addition, (3) molecule nodes only attached to one key are combined into a multicompound key
symbol (supernodes). The substructures of all keys are shown in blue, and the variable chemical groups that distinguish amolecule from its key are drawn
in red next to their connecting edge. (c) The key subset hierarchy for the model data set is displayed and annotated with substructures.
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(Figure 2a). The position of the substitution site is provided by
the substructure associated with the corresponding key node.
Second, structural changes responsible for observed potency

effects are revealed by hierarchical supernode patterns (Figure 2b).
In this pattern, series containing highly and weakly potent
compounds yield successively smaller subsets that ultimately
separate molecules with different potencies from each other. The
substructures associated with the key nodes then reveal favorable
substitution sites and R-groups.
Third, the occurrence of multiple series of compounds mod-

ified at the same site with overlapping sets of substituents can be
detected. These series occur as key nodes connected by several
molecule�key�molecule paths of length three (Figure 2c). Thus,
subsets of compounds modified at distinct substitution sites can

be immediately identified, and how substitutions at different sites
alter compound potency can be examined.
It is important to note that these characteristic SAR patterns

are an intrinsic feature of the BMMS data structure. Their detec-
tion in the graphs is sufficient to extract interpretable SAR infor-
mation from compound sets, if it is available. As further discussed
below, these patterns immediately identify structural modifica-
tions that are responsible for potency alterations.
Exemplary Application. The method is applicable to large

compound data sets. For example, it was applied herein to
analyze a set of 881 factor Xa inhibitors from BindingDB.15

The BMMS graph representing the entire data set is shown in
Figure 3. It consists of 23 connected components containing a
total of 858 compounds. Twenty-three compounds did not form

Figure 2. BMMS graph SAR signature patterns. (a) SAR hot spots appear as key nodes connected to molecules that cover a broad potency range (left).
These key nodes might be represented as supernodes (right; see also Figure 1b). (b) An exemplary subset hierarchy pattern is shown where an MMS is
separated into four subseries that distinguish highly (orange/red), moderately (yellow), and weakly (green) potent compounds from each other.
Because each key in the hierarchy is associated with a substructure, increasingly subset-specific substructures along the hierarchy reveal potency-
determining structural changes. (c) An exemplary pattern describing two “parallel series” is shown, i.e., sets of molecules that differ in one site and have
additionally been modified at another site with the same set of substituents. In the graph, such series are easily identified by repeating
molecule�key�molecule paths of length three. The key node in the path always connects the corresponding molecule pairs and marks the site
where the two series differ.
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an MMP, and these singletons were omitted because they do not
convey SAR information. Disjoint subgraphs are formed because
molecules in distinct graph components differ by more than one
structural modification and are hence not connected.
Many components of the factor Xa graph are found to

predominantly contain similarly colored molecule nodes. In
individual components, many molecules belonging to the same
series show little potency variation. Only in a few cases, green and
red nodes are connected to the same key. Such combinations of
green and red nodes form “activity cliffs”.16 The regular potency
distribution in the factor Xa graph indicates that changes in
compound structure are in this case mostly (but not exclusively)
accompanied by gradual changes in potency, consistent with the
presence of substantial SAR continuity.16

Although large potency differences between structurally re-
lated compounds are rare in the factor Xa data set, several regions
in the BMMS graph resemble the characteristic pattern outlined
in Figure 2a and represent SAR hot spots. A representative
example is the highlighted region 1 in Figure 3 shown in detail in
Figure 4a. Here, the para substituent of a benzyl group emerges as
an SAR hot spot. For a detailed analysis of individual substituents,
the subset hierarchy is used to search for a pattern resembling the
one in Figure 2b. The section of the hierarchy containing this
SAR hot spot is shown in Figure 4b. The key node at the top
represents a series of 11 compounds. Eight of these compounds
have medium to high potency and three compounds only low
potency. Following the branches down the hierarchy, a progressive
separation of highly and weakly active compounds is observed.

Figure 3. BMMS graph of a factor Xa inhibitor set. The graph contains 858 compounds distributed over 23 connected components. Selected regions are
highlighted and shown in detail in Figures 4 and 5.

http://pubs.acs.org/action/showImage?doi=10.1021/jm200026b&iName=master.img-003.jpg&w=460&h=472
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The threeweakly potent compounds are found to contain a common
substructure that distinguishes them from the other more potent

compounds. It is evident that primary and secondary amines and
amides are unfavorable substituents (set 6 in Figure 4b, highlighted

Figure 4. Informative SAR patterns for the factor Xa inhibitor set. The series shown here were identified by searching the graph for signature patterns
presented in Figure 2. (a) An SAR hot spot is shown with its associated substructure and exemplary substituents. The potency of the corresponding
compounds is reported as the pKi value. (b) The subset hierarchy for the series in (a) is displayed. The top node of the hierarchy represents the entire
series that is described by the substructure shown in (a). Each of the keys below represents a more specific substructure. For simplicity, only the groups
added in each key node to the general substructure are reported. Sites where these groups are attached to the general substructure are marked with an
“R”. In addition, the substituents of the compounds in this series and their subset relationships are shown in a Venn diagram. For clarity, only the sets
defined by the terminal key nodes are considered (and numbered). (c) Two parallel series are shown that correspond to the pattern in Figure 2c. The
nodes have been ordered according to decreasing potency for series A from left to right. The common substructures of these series and their R-groups are
displayed in the same order as the molecule nodes. The potency of the corresponding molecules is reported as the pKi value.
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by thick green circle). Other R-groups are less critical in this case
because the remaining compounds carry structurally diverse
substituents but are all moderately to highly potent.
In the hierarchy, a node with more than one predecessor

combines the individual features of its parental key nodes and
thus describes the overlap between the corresponding com-
pound series, as illustrated for node 2 in Figure 4b. Thus, for
SAR hot spots identified in BMMS graphs, the analysis of their
hierarchical ordering reveals detailed structural relationships
between compounds having different potencies.
In Figure 4c, two compound series are shown with parallel

modifications at the same site, yielding the pattern in Figure 2c.
They correspond to the highlighted region 2 in Figure 3. The
difference between the two series is a halogen substitution of
fluorine (series A) by chlorine (series B), which is represented by
each key node that connects corresponding compounds. The
color distribution reveals that the potencies of molecules carrying
the same substituent are generally similar. In both series the
potency of the compounds changes in the same direction and
gradually increases, as revealed by the pattern. It becomes clear
that para-substituted benzyl (or pyridinyl) groups are preferred
substituents and that these groups in most potent compounds
carry a halogen substituent, preferentially chlorine. The potency
difference between a meta- and para-substituted chlorobenzyl is
approximately 1 (series A) or 2 (series B) orders of magnitude.
Two of the keys that link the two series encode a substructure

obtained by deleting two single bonds (double cut), i.e., the blue
node in Figure 4c and the adjacent supernode. In these cases,
not only the halogen substitution occurs, but the entire sub-
stituted ring structure might be replaced. Thus, more extensive

modifications at the second site can be explored by analyzing
these series. Thus, this parallel series pattern is rich in SAR
information and provides direct access to structural changes at
defined sites that gradually increase compound potency.
Figure 5 summarizes how SAR information is practically

extracted from BMMS graphs. A subgraph representing an
interesting SAR pattern, as discussed above, is shown for the
factor Xa data set (region 3 highlighted in Figure 3). This sub-
graph contains a series of analogous inhibitors where R-group
modifications at a single site lead to potency variations spanning
nearly 3 orders of magnitude. The X-ray structure of one of these
analogues bound to factor Xa17 reveals that these compounds
intensively interact with the S1 and S4 pockets in the active site
of the enzyme, as indicated in Figure 5. As can be seen, the
modifications within this series of analogues that cause a sig-
nificant degree of SAR discontinuity16 predominantly affect
interactions in the S1 site of factor Xa. Hence, the SAR trend
revealed by the BMMS subgraph can also be rationalized in light
of the experimentally observed binding mode of one of these
inhibitors.

’CONCLUSIONS

Herein we have introduced a graphical SAR analysis method
that systematically organizes compound data sets on the basis of
local substructure relationships. The underlying data structure
does not depend on whole-molecule similarity calculations. The
BMMS graph representation contains characteristic subgraph
patterns that capture detailed SAR information and reveal impor-
tant structural modifications. Associated graphs of key node
hierarchies complement the SAR information obtained from

Figure 5. Structural changes leading to potency alterations. Shown is the BMMS subgraph (region 3 in Figure 3) for a series of factor Xa inhibitor
analogues whose structural differences are highlighted. X-ray data reveal that major interaction sites of these compounds in the active site of factor Xa
include the S1 and S4 pockets, as indicated for a crystallographically characterized analogue.

http://pubs.acs.org/action/showImage?doi=10.1021/jm200026b&iName=master.img-005.jpg&w=360&h=290
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BMMS graphs. Subgraphs representing well-defined SAR pat-
terns are an intrinsic feature of this data structure. Hence, in
practical applications, BMMS graphs and key hierarchies of
compound data sets are searched for such patterns. If they are
present, a data set contains interpretable SAR information and
the underlying structural modifications can be readily accessed.
The exemplary analysis of the large factor Xa data set presented
herein illustrates all components and analysis steps required to
extract SAR information from BMMS graphs of compound
data sets.
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